トポロジカル絶縁体表面における微視的電子・スピン輸送計測 -デバイス応用に向けて-

Microscopic electrical and spin transport measurements at surfaces of topological insulators

-Toward device application -

平原 徹 (Toru HIRAHARA, Dr. Sci.) 東京工業大学大学院 理工学研究科 准教授 (Associate professor, Graduate School of Science and Engineering, Tokyo Institute of Technology) 日本物理学会 日本表面科学会 受賞:第三回日本物理学会若手奨励賞(2009年度) 日本表面科学会奨励賞 (2010年度) 研究専門分野:表面物理学 材料科学

あらまし エレクトロニクスの発展として、電子の持 つスピンを利用した高機能デバイス作成を目指すスピ ントロニクスが基礎・応用両面から盛んに研究されて いる。本研究の目的は、Rashba・トポロジカル表面に おいて電流を流すことにより発現するスピン偏極を検 出することである。このために新しいナノスケール実 験手法・装置開発を行い、それを用いた表面状態の電 子・スピン輸送計測を行った。その結果、スピン輸送 に起因すると見られる信号の検出に成功した。これは 表面での電子・スピン伝導現象を検出した重要な基礎 研究であるとともに、実際のデバイス応用に向けた重 要な一歩と言える。

1. 研究の目的

エレクトロニクスは、電子の持つ電荷の自由度を利 用したものである。最近、電子の持つスピンを利用し てさらに高機能なデバイスを開発するというスピント ロニクスが大きな発展を遂げている。スピンを制御す る方法として、従来は磁性体に磁場をかけるという大 がかりな装置が必要であったが、非磁性物質であって も電場(電流)を用いてスピンを制御可能である。こ れは Rashba 効果と言われ、スピン軌道相互作用と空 間反転対称性の破れによって起こる。表面では必然的 に空間反転対称性が破れており、多くの表面系で Rashba 効果によってスピン偏極しているものが見つ かった。例えば、Bi(ビスマス)薄膜の表面状態など が有名な例である。さらに、近年これと関連したトポ ロジカル絶縁体とよばれる新奇な物質群が理論的に提 案され、実験でも多くの研究が行われている。トポロ ジカル絶縁体ではバルク内部は非磁性体であるが、上 記 Rashba 表面系と同じように表面状態がスピン偏極 しており、さらに、その分散がディラック方程式に従 う直線的なものになっている。この表面状態は「トポ ロジカルに保護」されており、不純物などの影響を受 けにくい。トポロジカル絶縁体としては、Bi₂Se₃(ビ スマスセレン)などがよく研究されている。

上で説明したように、Rashba 表面やトポロジカル 表面系を利用すれば、非磁性物質であっても電場を用 いてスピン偏極を生み出すことが可能である。例えば、 電流を流すだけで試料端では逆向きの面直スピンが蓄 積し(ホール効果のスピン版、スピンホール効果 SHE、 図 1(a))、また、試料内部には面内方向のスピン偏極 が誘起される(電流誘起スピン偏極 CISP、図 1(b)) [1]。これらのスピン輸送現象を観測し、その起源を解 明することは学術的に大事であると同時に、将来の低 消費電力スピンデバイス開発に向けて重要な基礎研究 である。しかし、表面状態は物質内部に比べて体積が 圧倒的に小さいため、その輸送特性を調べるのは簡単 ではない。

トポロジカル絶縁体表面における微視的電子・スピン輸送計測 -デバイス応用に向けて-Microscopic electrical and spin transport measurements at surfaces of topological insulators

-Toward device application -

本研究では、これらのスピン分裂した表面状態の電 荷・スピン輸送現象を計測することを目的とした。具 体的には、

- 表面状態の微細加工方法の確立
- ② スピン偏極走査トンネルポテンショメトリ測定 装置の開発
- ③ ①・②の手法に基づく Rashba・トポロジカル表 面系のスピン輸送現象の観測

を目指した。

2. 研究の背景・動向

最近、物質の電子状態(バンド構造)を測定する角 度分解光電子分光実験の装置の分解能が上がり、また、 光電子のスピンを判別する技術が向上した。その結果、 表面状態の中でこれまで Rashba 効果の主たる研究対 象であった半導体ヘテロ界面系*1よりも巨大なスピン 分裂を示す系や、スピンの向きがこれまでの理論とは 違う系が多く見つかり、より高効率で散乱されにくい 興味深いスピン伝導が期待できることが分かった。ま た、トポロジカル絶縁体の表面状態に関しても、バン ド・スピン構造測定が多く行われるとともに、走査ト ンネル顕微鏡を用いて不純物による後方散乱の抑制な どが実証され、トポロジカルな性質による質的に新し いスピン伝導が期待されている。このような研究は、 国内、海外を含め多くの研究者によって行われ、凝縮 系物理学の一大トピックスとなった。

しかし、表面状態のスピン分裂したバンド構造に起 因して期待される電場(電流)によるスピン輸送現象 を測定した研究例は多くない。これは表面状態が固体 表面最上位層に存在するために、それのみの輸送特性 を評価するのが極めて困難だからである。さらに、光 電子分光や走査トンネル顕微鏡測定は、超高真空下で 表面状態の特性を測定しているのに比べ、多くの輸送 特性実験は大気下で行われ、環境の違いが表面状態に どのような影響を与えるかは自明ではない。しかし、 我々は半導体表面上にナノメートルスケールに測定プ ローブを配置することで、表面第一層のみの電気伝導 度やホール係数を測定できることを過去に報告した。 そこで本研究では、これをスピン伝導測定に拡張させ ようと研究を進めた。

- 3. 研究の方法及び結果
- (1) 表面状態の微細加工方法の確立

表面研究は超高真空下で行われ、試料を大気に取り 出すことはできない。そのため、微細加工技術として 一般的なリソグラフィ*2を用いた加工は一切不可能で ある。本研究では、その代わりに超高真空環境と両立 可能な収束イオンビーム*3を用いた微細加工を試みた [1]。図2は、このように FIB を用いた加工した Bi 細 線を独立駆動型四探針走査トンネル顕微鏡装置で電気 伝導測定している様子の走査電子顕微鏡図である。外 側二本の針に電流を流し(I)、内側二本の針で電圧降下 を測定し(V)、電圧測定端子間の距離(d)を変化させる ことで、測定している系の次元性が判定できる。

その結果、図3にあるように、測定された抵抗は探 針間隔に対し線形に変化し、Bi 細線の電気伝導が確か に一次元的であることが分かった。微細加工していな い部分の測定抵抗は、探針間隔依存性を示さず二次元 伝導になっている。つまり、超高真空下でのFIBを用 いた微細加工により、伝導の次元性を変化させること ができることを初めて発見した。さらに、Bi 細線の幅 (w)を変化させることで得られる直線の傾きが変わる ことが分かり、これにより細線の伝導度が計算できる。

トポロジカル絶縁体表面における微視的電子・スピン輸送計測 -デバイス応用に向けて-

Microscopic electrical and spin transport measurements at surfaces of topological insulators

-Toward device application -

図4に、このようにして得られた伝導度の細線幅依存性を示す。測定点はやはり細線幅が大きいほど大きな伝導度を示し、一次元伝導と合致している。しかし図4のグラフは二つほど奇妙な点がある。まず、直線でフィッティングしたときに原点を通過しないことである。X軸方向に700nmほどずれたところで伝導度はゼロとなる。さらに、このフィッティングによって得られる二次元伝導度は1.94mSであり、微細加工していない場所での測定から得られた二次元伝導度の3.39mSよりも低いことが分かった。この起源に関して現在考察中であるが、FIBによる加工の際に意図し

ていない試料へのダメージが起きている可能性がある。 今後、これを減らすための対策を講じていくつもりで ある。

(2) スピン偏極走査トンネルポテンショメトリ 測定装置の開発

走査トンネル顕微鏡 (STM) は、原子レベルに鋭い 針を表面に近づけて、両者を数Aまで接近させ、流れ るトンネル電流(表面に垂直方向)を画像化する実験 手法である。トンネル電流は表面と針の電位差及び状 熊密度、さらに、両者の物理的距離に比例するが、電 位差がないときは基本的にトンネル電流が流れない。 これを逆手にとると、表面横方向に電流が流れている ときに、針と表面の垂直方向のトンネル電流が流れな いように針の電位を調節することで、表面のポテンシ ャル分布をマッピングすることができる。これが走査 トンネルポテンショメトリ (STP) 測定であり、原理 的には走査トンネル顕微鏡が原子分解能を有するので、 原子一個の究極のレベルで電気伝導測定が可能となる。 さらに、スピン偏極した探針を用いることで、スピン 分布測定も可能となる。本研究で表面状態スピン輸送 現象測定をする際にも、この手法を用いることが必須 となる。なぜならば、表面 Rashba 系はスピン分裂が 巨大であるが、これは逆に言うと、スピンの緩和も非 常に速いということであり、スピン流観測を行うには、 非常に細かいスケールでの精密な測定が必要になるか らである。

図 5 に、実際に作製した超高真空(10⁻¹⁰torr)、強磁 場印加(8T)可能な低温(2K)走査トンネルポテンショメ トリ測定装置の写真を示す。装置内で試料を作成し、 真空を破ることなく低温・強磁場下で構造観察、電子 状態測定(走査トンネル分光)、そしてポテンシャル測 定が可能である。

図6に、作製した装置で測定されたSi(111)7×7表面 の走査トンネル顕微鏡像を示す。原子分解能が得られ ており、装置がきちんと動いていることが分かる。

また、図 7 に、Ag(111)表面の走査トンネル顕微鏡 像(左)と、その状態密度の空間マッピング(右)を 示す。Ag(111)面の表面状態がステップなどに散乱され て、干渉によって定在波が生じている様子がきちんと

トポロジカル絶縁体表面における微視的電子・スピン輸送計測 -デバイス応用に向けて-Microscopic electrical and spin transport measurements at surfaces of topological insulators -Toward device application -

見て取れる。これにより、STM による像取得及び走査 トンネル分光測定に関しては問題なく動いていること が分かった。

さらに、走査トンネルポテンショメトリ測定を行う ために、測定回路を作成し測定を行った。図8にある ように、STMとSTPの同時測定により、電流を印加 しながら試料表面の形状とポテンシャルを同時に取得 できるようになった。このように、表面の電気伝導を 測定する新たな手法が開発できた。残念ながら、スピ ン輸送計測までには至らなかったが、今後磁性探針を 開発し、これを利用することで、スピン輸送計測がで きると思われる。

図 6 作製した走査トンネルポテンショメトリ 測定装置で得られた Si (111)-7×7 表面 の原子分解能の像

図7 作製した走査トンネルポテンショメトリ測定装置で得られた Ag (111) 表面のトポグラフ像 (左) と その状態密度の空間マッピング (右) トポロジカル絶縁体表面における微視的電子・スピン輸送計測 -デバイス応用に向けて-Microscopic electrical and spin transport measurements at surfaces of topological insulators -Toward device application -

トポグラフ像(左)とそのポテンシャル分布の空間マッ

(3) Rashba・トポロジカル表面系のスピン輸送 現象の観測

(1) で示した表面微細加工技術を用いて、トポロジ カル絶縁体 Bi₂Se₃ 薄膜のスピンホール効果測定を試 みた。図 9 のように、Bi₂Se₃を微細加工し、電流プロ ーブと電圧プローブが空間的に離れている非局所抵抗 測定を行った。その電圧プローブ距離依存性の結果が 図 10 に示されている。このデータを、スピンホール 効果を含んだ場合の解析と含まない場合の解析を行っ た結果、スピンホール効果を含んだ方が実験をよく再 現し、スピンホール効果を含んだ方が実験をよく再 現し、スピンホール効果を検出することに成功した。 ただ、測定されたデータのほとんどがスピンホール効 果以外の寄与であり、絶対値としては非常に小さいも のであった。

トポロジカル絶縁体表面における微視的電子・スピン輸送計測 -デバイス応用に向けて-

Microscopic electrical and spin transport measurements at surfaces of topological insulators -Toward device application -

4. 将来展望

今後は装置改良により、より精度よく Rashba・ト ポロジカル表面系のスピン輸送を行う必要がある。具 体的には、測定回路の分解能向上や、加工形状の更な る工夫により、シグナルを大きくする必要がある。そ して究極的には、実際のデバイス応用を念頭において 大気下で同様の実験を行い、超高真空下で得られた結 果が大気中でも再現できることを確認する必要がある。 それらが全てクリアされれば、新奇な低消費電力デバ イスが作成できると信じている。

用語解説

*1 半導体ヘテロ界面系

バンドギャップの違う半導体を接合すると、その界 面で電子が束縛され、電子は厚さ方向に量子化され てエネルギーは離散化する。このように、一次元方 向への閉じこめを作った構造を量子井戸構造とい う。界面の平行方向は自由に動くことができるため、 二次元自由電子系となり、ゲート電圧を用いてその 物性を制御でき、エレクトロニクスデバイス作成の 基礎となっている。

*2 リソグラフィ

感光性の物質を塗布した物質の表面をパターン状 に露光(パターン露光、像様露光などとも言う)す ることで、露光された部分と露光されていない部分 からなるパターンを生成する技術。

*3 収束イオンビーム イオンを電界で加速したビームを細く絞ったもの である。集束イオンビームは、微細加工、蒸着、観 察などの用途に用いられる

参考文献

 N. Fukui, R. Hobara, T. Hirahara, S. Hasegawa, Y. Miyatake, H. Mizuno, T. Sasaki, and T. Nagamura, e-J. Surf. Sci. Nanotech. **12**, 423 (2014)

関連文献

T. Tono, T. Hirahara, and S. Hasegawa, New J. Phys. **15**, 105018 (2013).

この研究は、平成23年度SCAT研究助成の対象と して採用され、平成24~26年度に実施されたもの です。