Development of the Micro Radar Grid

牛尾 知雄(Tomoo Ushio, Ph.D.) 大阪大学大学院 工学研究科 准教授

(Associate Professor, Faculty of Engineering, Osaka University) 電気学会 リモートセンシング学会 気象学会 大気電気学会 IEEE American Meteorological Society American Geophysical Union 受賞:平成22年度日本大気電気学会学術研究賞 平成24年度電気学会第 68回電気学術振興賞 論文賞

著書:「スプライト・雷放電の宇宙からの観測」「地文台によるサイエンス - 極限エネルギー宇宙物理から地球科学まで - 」Universal Academy Press, ISBN978-4-90416-01-3, p205-p210 (2008) Kalman filtering applications for Global Satellite Mapping of Precipitation (GSMaP), Satellite Rainfall Applications for Surface Hydrology, Editedy by Mekonnen Gebremichael and Faisal Hossain, Springer, ISBN978-9048129140 (2009) EMC 問題の変遷と最近の研究動向 雷放 電と EMC, 電気学会 125 年史 1888-2013, 電気学会 (2013)

研究専門分野:リモートセンシング 電磁波工学 環境電磁工学 大気電 気学 放電高電圧工学等

あらまし 近年の日本社会の高度化に伴って、集中豪 雨や竜巻など気象災害への対策の必要性は、年々広く 認識されるようになってきている。降雨を遠隔計測で きる降雨レーダは、特に有用であることから、日本全 土を覆う大型Cバンドレーダ観測網が整備されており、 そのデータは現状把握、予報などに広く活用されてい る。しかし、低高度のおける未観測域の存在、分解能 不足等の問題により、これ以下の時間空間分解能を有 する現象、例えば、竜巻等を十分に分解することが困 難である。そこで本研究では、近年の技術革新の著し い情報通信技術を応用し、高時間空間分解能小型レー ダを面的にネットワーク配置し、このネットワーク内 に散在するレーダ群を仮想的な超大型レーダとみなし て、様々な規模の処理や運用を行うマイクロレーダグ リッドの構築とそのデータ処理方法の検討を行う。

1. 研究の背景と目的

都賀川水難事故として知られる 2008 年 7 月 28 日に 兵庫県神戸市灘区の都賀川で発生した悲劇的な水難事 故をご記憶だろうか? この事故は、神戸市に突発的、 局所的な集中豪雨が発生し、水遊びなどで都賀川や河 川敷にいた 16 人が急激な水位上昇により流され、小 学生 2 人、保育園児 1 人を含む 5 人が死亡した事故で ある。あるいは、2012 年 5 月 6 日に茨城県つくば市 で発生した竜巻事故も記憶に新しいと思う。近年、ゲ リラ豪雨として知られる、このような突発的かつ局所 的に甚大な被害をもたらす豪雨あるいは竜巻のような 大気現象が、実は増加傾向にある。これは、急速な都 市化や地球温暖化の影響と言われているが、本当のと ころはわかっていない。では、このようなゲリラ豪雨 や竜巻の被害を軽減するには、どうしたら良いのだろ うか?

こうした現象を計測する最も有効な手段は、電磁波 を用いたリモートセンシング技術であり、レーダ技術 として知られている。この手段の利点は、何十あるい は何百 km という広範囲な領域に分布している降雨の 構造を瞬時に把握できるところにある。このため、国 土交通省や気象庁等は日本全土を覆うようにレーダ観 測網を整備し、我々も Web 等で降雨の分布状況を知る ことができる。

改めて言うまでもないことであるが、レーダという のは、その歴史は古くその原理や用途などは良くご存 じの方も多いと思う。今や通常の会話に出てきても通 用するレーダ (RADAR) は、RAdio Detection And Ranging の略のことで、送信アンテナから放射された 電磁波が、検知対象物に散乱あるいは反射された後に 受信され、その時間差および振幅から対象物までの距 離と形状等に関する情報を得るのが原理である。この ような原理に基づく現在のレーダは、パラボラタイプ のアンテナが用いられ、ペンシルビームと呼ばれる1 度前後の細いビーム幅内の領域を、方位角方向に 360 度回転しながら、仰角を徐々に上げて観測していく機 械的な走査方法が用いられている。しかし、この方法 では、地上付近の走査のみでは1分から5分程度、3 次元立体観測には、5分から10分以上必要となってい た。これに対して、前述の局地的豪雨をもたらす積乱

Development of the Micro Radar Grid

雲は、10分程度で急速に発達し、竜巻もわずか数分で 発生し移動するため、これまでのレーダ方式では、こ うした現象をスナップショット的に捉えることはでき ても、その発生から発達そして消滅までを逐次、観測 することは不可能であった。これが、これらの大気現 象の生成メカニズムの解明、予兆現象の発掘、迅速な 警報、予知を阻む大きな要因であった。さらに、現在 広く用いられている大型レーダによるシステムでは、 広い観測範囲が得られる一方、以下のような制限を受 ける。

(1) 地球曲率による低層未観測域

観測範囲が 100km 以上に及ぶ大型レーダの場合、 一般的に、地球の曲率に伴って、遠方になるに従い 地表面から上方に観測域が設定される。例えば、地 上 10m の高さにレーダが設置され、仰角 1 度での 観測が行われた場合、距離 120km 地点における最 低観測高度は、約 3km となる。集中豪雨等をもた らすシビアな気象現象は、低層に竜巻等の特徴的な 現象を伴うことがあるため、このような現象をター ゲットにする場合は、大型レーダでは捉えることが 難しくなる。

(2) ビーム広がりに伴う空間分解能劣化

良く知られているように、アンテナからの電磁波放 射はビーム幅を有し、遠方ではこの広がりによって 空間分解能が劣化する。例えば、1度のビーム幅を 有するアンテナを用いた場合、120km 先におけるビ ーム広がりは約2kmとなる。即ち、上記(1)の効果 を含めると、120km 先の降雨を対象とした場合、高 度3km 以上の降雨を2kmの分解能で観測すること になる。これは、数km以下の構造を有する竜巻や 局所的な豪雨の構造を十分に捉えることが難しいこ とを示している。

以上のような本質的な問題が介在しているため、従 来の大型レーダを高度化するだけでは、短時間の間に 竜巻等の現象を生起する積乱雲の構造を時空間的に密 に観測することは難しい。このようなことから、我々 は図1に示すような小型レーダネットワークによるア プローチを提唱している。その基本的な考え方と特徴 は、以下のようにまとめることが出来る。また、図 2 に本研究で用いた広帯域レーダ[1]の外観写真を示す。

(a) 広帯域の使用

レーダにおけるレンジ方向の空間分解能は、帯域幅 に比例する。本レーダでは、80MHz という従来に 比べて数十倍の帯域を確保し、積乱雲の構造を極め て高い空間分解能で観測することが出来る。

(b) Ku 帯の使用

本レーダシステムでは、通常のレーダより高い周波 数である Ku 帯を中心周波数としている。しかし、

Development of the Micro Radar Grid

降雨減衰が大きいため、本レーダでは観測可能距離 を15kmから20kmの近距離レーダとしている。ま た、高い周波数帯に移行することによって、アンテ ナシステムを小型化出来ること、高精度な偏波観測 が可能になると思われること等の利点がある。

(c) 多地点観測

前述のように本レーダは、20km 以内の近距離を対 象としている。そのため、一台のレーダがカバー出 来る範囲は極めて限定的である。これに対して、観 測対象とする積乱雲は数十 km 以上の水平方向の広 がりを有し、垂直方向にも時には対流圏界面付近ま で成長することがある。こうした現象を広くカバー するには、一台ではなく複数台を用いて、観測範囲 を補償する必要がある。さらに、一台において鉛直 方向まで含めて高速に3次元スキャングを行うこと により、地表面付近からエコートップまでをカバー することが出来る。

以上のことから、本研究では、近年の技術革新の著 しい情報通信技術を応用し、高時間空間分解能小型レ ーダを面的にネットワーク配置し、このネットワーク 内に散在するレーダ群を仮想的な超大型レーダとみな して、様々な規模の処理や運用を行うマイクロレーダ グリッドの構築を行う。

2. 研究の方法、結果

これまで、図2に示されるような広帯域レーダ3機 によるレーダネットワークを整備した[2]。そのスペッ クを表1に示す。竜巻等は数十メートル以下の構造を 有しているため、これらの現象を十分に分解するため には、10m以下の分解能が必要である。レンジ方向に 10m以下の分解能を持たせるためには、周波数帯域幅 として数十 MHz 以上の帯域を割り当てる必要がある。 しかしながら、近年の逼迫する周波数資源のため、X 帯ではこのような広帯域を一台のレーダに割り当てる ことはもはや困難である。このため、本レーダシステ ムでは、X帯より高い周波数である Ku帯を中心周波 数とした。送信器は、従来ではマグネトロンやクライ ストロン、TWTA などが送信アンプとして、一般的に 気象レーダで用いられてきたが、寿命や信号処理のし 易さ等から本レーダでは固体化素子を用いている。

表 1 SPECIFICATION OF THE BBR

	Item	Specification
System	Operational frequency	$15.71 - 15.79 \; \mathrm{GHz}$
	Operation mode	Spiral, Conical, and
		Fix
	Band width	80 MHz (max)
	Coverage Az / El	$0-360$ / $0-90~\mathrm{deg}$
	Azimuth rotation	40 rpm (max)
	speed	
	Weight	500 kg (max)
	Height-Width-Depth	1.5 m in width
Antenna	Gain	36 dBi
	Beam width	3 deg
	Polarization	Linear
	Cross polarization	25 dB (min)
	Noise temperature	40 K (typical)
Transmitt	Transmission power	10 W (max)
er	Duty ratio	Variable
and	Noise figure	2 dB (max)
Receiver		
Signal Processin g	Digital to analog	170 MHz (max) / 14
	converter	bits
	Analog to digital	170 MHz (max) / 14
	converter	bits
	Range gate	8k to 32k points
	Pulse repetition time	Variable

想定している観測範囲(20km 程度)で、約 1mm/h 程度の降雨を観測出来る送信出力はレーダ方程式から 算出可能であり、本レーダでは 10W とした。また、 このような低出力では観測感度を従来型のパルスレー ダでは保証することが難しいため、パルス圧縮を用い て、高ゲインを確保している。このようなレーダ3機 を大阪北部一帯において配置し、レーダネットワーク

Development of the Micro Radar Grid

を形成した。その配置図を図3に示す。そして、これ らのネットワークに加えて、フェーズドアレイレーダ がネットワーク中央近辺に配置されている。これらの 観測地点は可能な限り高速通信網を介してインターネ ットに接続し、観測装置の遠隔監視・操作およびデー タ移送を行える体制とした。また、大阪平野内に設置 された広帯域レーダのサイトにはディスドロメータ (雨滴粒径分布測定装置)を設置した。

構築した Ku 帯広帯域レーダネットワークにおける 実際の降雨の観測結果の一例を図4に示す。この図は 3 台のレーダ、即ち、豊中、大阪市内、枚方にそれぞ れ設置したレーダによる同時観測の高度 1km におけ る水平断面図を示している。そして、図4 d-3 にこの 3 台による観測結果の合成結果を示す。このように、3 台のレーダからのデータを合成することによって、 各々レーダ観結果に表れている不観測域が補正される と共に、より高分解能な画像イメージを出力すること に成功していることがわかる。

Development of the Micro Radar Grid

また、本レーダでは用いている中心周波数が Ku帯 である 15.75GHz であるので、降雨減衰が顕著である。 例えば、図 4 a-3 において、20km 圏内の外縁部にお いては、若干ではあるいがレーダ反射因子の減少が確 認できる。これは降雨減衰による影響と考えられ、正 確な雨量推定を行うためには、この減衰量を補正する アルゴリズムの開発が重要である。そのため、本研究 では、複数台の広帯域レーダによる観測が重複する領 域において、より高分解能な降水構造の推定を行った。 従来型気象レーダに用いられている降雨減衰補正手法 の一つに Hitchfeld-Borden 法 (以下、HB 法) があ り、HB法は減衰量の小さいS帯やC帯においては良 好な補正結果を示すが、降雨減衰の影響の大きい Ku 帯においては、降雨の状況によって補正係数の値が不 安定になる。そこで本研究では、HB 法を基に、複数 の広帯域レーダが重複する観測領域における各レーダ

の観測値に対する減衰補正値の差の確率密度関数を用 いた評価関数により、最適な補正係数 a の値を最尤推 定する手法を提案した。更に、評価関数に時間フィル タや補正係数 a に関する事前分布の項を付加した。a に関する事前分布は、地上雨量計による観測結果より 求めた a の頻度分布より導出した。図 5a 及び図 5b に 各々広帯域レーダネットワーク観測データに対する HB 法による降雨減衰補正、および提案手法の適用結 を示す。これによると、HB 法による補正結果がレー ダ遠方において発散しているのに対し、提案手法にお いては解が発散せず、安定的に減衰補正を行う事がで きることを確認した。

また、広帯域レーダネットワークによる観測結果と 大阪大学吹田キャンパス内に設置されたX帯フェーズ ドアレイレーダ[3]観測結果の比較を行った。比較を行 った観測事例を図6に示す。

Development of the Micro Radar Grid

これは、2012年8月6日18時2分における広帯域 レーダネットワーク観測とフェーズドアレイレーダに よる同時観測結果であり、上側の図が広帯域レーダネ ットワークによる観測例、下側の図がフェーズドアレ イレーダによる観測例である。基本的に両レーダによ って観測された降雨パターンは良く一致しており、本 研究によって開発した降雨減衰補正アルゴリズムが正 しく動作していることが示唆される。また一方、比較 対象としたフェーズドアレイレーダは、周波数が 9.4GHz で、送信ビームに広角のビームを用いて、受 信時に受信ビーム幅を絞るデジタルビームフォーミン グ技術を採用している。このため、従来型のパラボラ アンテナを用いたレーダ方式と基本的にその動作特性 が異なる。しかし、両レーダの降雨パターンは良く一 致しており、これらの両レーダによる観測精度の高さ が伺われる。フェーズドアレイレーダによる観測結果 の中で、左下方において、広帯域レーダネットワーク の観測結果では見られない線状の降水パターンが現れ ているが、これはフェーズドアレイレーダの受信電力 値をレーダ反射因子に変換する際に、ノイズレベルを

同時に変換したことに因るゴーストであり、実際の降 雨エコーではないことが確認されている。そして、メ インビーム交点におけるレーダ反射強度の比較により、 両者のバイアス誤差は 0.81 [dB]、標準偏差は 5.8 [dB] という結果が得られた。両レーダ間の観測値の誤差は、 各レーダの較正値の誤差、観測ノイズ、観測ボリュー ムの差による誤差に起因し、数 dB 程度であると考え られ、広帯域広帯域レーダネットワークと X 帯フェー ズドアレイレーダの観測誤差はその範囲内に収まって いる。

さらに、地上に設置されたディスドロメータとの比 較を行い、本研究で構築した広帯域レーダネットワー クの精度を評価する。光学式のディスドロメータで計 測された一分毎の雨滴粒径分布を用いて、ミー散乱の 公式に基づいて、一分間のレーダ反射因子を計算する。 計算されたレーダ反射因子と、同時刻に広帯域レーダ の上空約 100m において計測されたレーダ反射因子の 平均値を時系列において比較したものを図 7 に示す。 上図が時系列変化を表し、下図はその両者の差の分布 を示している。

Development of the Micro Radar Grid

両測定はそれぞれ雨滴の直接観測および電磁波の散 乱観測であり、異なる物理パラメータを測定している にも関わらず、極めて良く一致した結果を示しており、 本研究において構築したレーダネットワークが極めて 高精度でレーダ反射因子の測定を行っていることがわ かる。相関係数は 0.95 であり、標準偏差は約 1.6dBZ となった。これらのことから、本研究で構築を行った 広帯域レーダネットワークの観測上の誤差が数 dB 程 度に収まっていることがわかり、高速高分解能レーダ ネットワークの構築を行うことが出来た。

3. 将来展望

以上見てきたように、本レーダネットワークによっ て捉えられたデータが示している画像は、従来型のレ ーダが数分間隔で数百メートルの分解能であるのに対 して、十数メートル、そして一分毎と時間的そして空 間的に極めて高分解能であった。そして、このような ネットワーク環境下における降雨減衰補正アルゴリズ ムの開発を行った結果、その精度も数 dB 程度に収ま り、このレーダネットワークのポテンシャルの高さを 示すことができた。今後、局地的大雨や集中豪雨など の現象を対象として、性能評価試験を兼ねた観測を行 う共に、様々な応用に向けた取り組みを行う予定であ る。

本レーダネットワークそしてフェーズドアレイレー ダにより得られる詳細な3次元観測データは、短時間 に大雨をもたらす積乱雲のメカニズムを明らかにして いくであろうと思われる。これは基礎科学的に大きな ブレークスルー、発見が、本レーダを用いてなされる ことを意味する。そして、気象予測の高精度化、また、 局所的・突発的な気象災害の前兆現象の検出や短時間 予報(ナウキャスト)情報としても応用されていくで あろう。大阪市や大阪府等の自治体との連携も開始し たところである。

また、このような高分解能レーダに関する公開シン ポジウムを開催したところ、会場に入りきらないほど の盛況であった。これはゲリラ豪雨や竜巻などの自然 災害に対する社会的な関心の高さを反映しているので はないだろうか。経済的に発展を遂げ、餓えることの ない日本となったが、このような自然災害は、高度に 発達した社会においても依然として猛威を振るい、 我々の生活を脅かす存在である。このような自然災害 を少しでも低減し、安心安全な社会を実現するため、 情報通信技術を初めとする様々な技術は大きな役割を 今後果たしていくことと考えられる。今後も変わらぬ ご支援、ご鞭撻をお願いする次第です。最後になりま すが、この機会を与えていただきました各位に感謝致 します。

参考文献

- Yoshikawa, E., Tomoaki Mega, Takeshi Morimoto, Tomoo Ushio, Zen Kawasaki, Katsuyuki Imai, and Shin'ichiro Nagayama, Development and Initial Observation of High Resolution Volume Scanning Radar for Meteorological Application, *IEEE Trans. Geosci. Remote Sens.*, VOL. 48, NO. 8, pp.3225-3235, 2010.8
- [2] Yoshikawa, E., T. Ushio, Z-I. Kawasaki, and V. Chandrasekar, Dual-Directional Radar Observation for Performance Evaluation of the Ku-band Broadband Radar Network, J. Atmos. Ocea. Tech., Vol. 29, No. 12, pp. 1757-1768, 2012.12
- [3] Yoshikawa, E., T. Ushio, Z-I. Kawasaki, S. Yoshida, T. Morimoto, F. Mizutani, and M. Wada, MMSE Beam Forming on Fast-Scanning Phased Array Weather Radar, *IEEE Trans. Geosci. Remote Sens.*, Vol. 51, Issue 5, pp. 3077-3088, 2013

この研究は、平成21年度SCAT研究助成の対象と して採用され、平成22~24年度に実施されたもの です。