High-capacity photonic networks based on adaptive optical-path control

森 洋二郎 (Yojiro MORI, Ph. D.) 名古屋大学 工学研究科 情報・通信工学専攻 准教授 (Associate Professor, Nagoya University) IEEE, OSA, 電子情報通信学会 レーザー学会 他 研究専門分野:通信工学 光ネットワーク ディジタル信号処理

あらまし

光ネットワークが扱うデータトラフィック量は急速 に増大している. このため光ネットワークのトラフィ ック収容効率の向上が急務である. 収容効率向上のた めに、高次変調方式と超高密度波長分割多重方式の導 入が望まれるが、このようなシステムでは光ファイバ の非線形性及び光ノードにおけるスペクトル狭窄に起 因する信号品質の劣化が顕著であるため、伝送距離と ノードホップ数が厳しく制限されてしまう.距離適応 変調は光パスの伝送距離に応じて変調次数を選択する ことでネットワークの容量を向上することが可能であ るが、超高密度波長分割多重システムに距離適応変調 を適用するためには距離とノードホップ数に依存する 伝送特性を考慮する必要があるため、その実現は容易 ではない.一方,我々が提案してきたGrouped Routing ネットワークは光パスをグループ単位でルーティング することで,超高密度波長分割多重を実現しながらも スペクトル狭窄の回数を規定値以下に制御する.この ため、距離のみを指標とした距離適応変調を使用する ことが可能である.本稿では,距離適応変調と Grouped Routing を組み合わせることで光ファイバの 利用効率を大幅に向上できることを、伝送特性解析と ネットワーク設計により示したので報告する.

1. 研究の目的

急速に増加を続ける光ファイバ通信需要に対応する ためには,高次変調方式,超高密度波長分割多重シス テム及びエラスティック光ネットワークの導入が必要 不可欠である[1-3]. しかし、これらの方法は光ファイ バの非線形性及び光ノードによるスペクトル狭窄に起 因する信号品質の劣化が顕著であるため,最大伝送距 離とノードホップ数が厳しく制限されてしまう[4]. 一 方で, 伝送距離に従って変調時数を決定する距離適応 変調方式は周波数利用効率を大幅に向上することが可 能である[3]. しかし超高密度波長分割多重システムで は距離だけではなくノードホップ数も伝送性能に影響 を与えることから、距離適応変調を適用することは容 易ではない.距離とノードホップ数に応じて変調方式 とパス帯域を割り当てることでこの問題を解決できる と考えられるが、全ての光パスに対して最適な変調方 式とパス帯域の組み合わせを決定する必要がありその 実現は困難である.一方で,我々が提案してきた Grouped Routing ネットワークは,光パスをグループ 単位でルーティングし、add/dropのみを光パス単位で 行う.本方式を用いることで,超高密度波長分割多重 を実現しながらもスペクトル狭窄の回数を制御するこ とが可能である[5]. このため、ノードホップ数を考慮 することなく高密度性を維持しながら距離適応変調を 用いることができる.

本稿では、距離適応変調と Grouped Routing を組み 合わせることで、周波数利用効率を大幅に向上できる ことを伝送特性解析及びその結果に基づいたネットワ ーク設計により示す.

2. 距離適応変調 Grouped Routing ネットワーク

従来,距離適応変調を用いる場合には,スペクトル 狭窄の影響を受けないほど十分に広い帯域を光パスに 割り当てていた.一方で,光パス帯域を狭める事で周 波数利用効率を改善することが期待される.しかし, そのような場合,光ノード内の波長選択スイッチ (WSS: Wavelength-selective switch)に起因するスペ クトル狭窄により最大ノードホップ数は厳しく制限さ れてしまう.このため,スペクトラム狭窄を生じるシ ステムでは距離適応変調を有効に使用することはでき ない.図1に示すように,距離とノードホップ数に応 じて変調方式とパス帯域を割り当てることでこの問題 を解決できると考えられるが,全ての光パスに対して 最適な変調方式とパス帯域の組合せを決定する必要が

High-capacity photonic networks based on adaptive optical-path control

あり、パス割り当ての処理が複雑となるためその実現 は困難である.

周波数利用効率を高めながらもこの複雑性を解消す るために,我々は距離適応変調と Grouped Routing を 組み合わせたネットワークを提案する.この手法では, 複数の光パスが Grouped Routing Entity(GRE)と呼 ばれるグループにまとめられ、ルーティング処理は GRE 単位で行われる[5]. GRE 内には信号を密に収容 し、一方で GRE 間に十分なガードバンドを挿入する ことでルーティング処理時のスペクトル狭窄の影響を 最小化しながらも周波数利用効率を向上させることが できる. スーパーチャネルを構成するサブキャリアと は異なり, Grouped Routing では add/drop 処理は光 パス単位で行う. これによりグループ単位でのルーテ ィングにおける性能劣化の影響を抑制することができ るが、隣接パスの add/drop 処理時にスペクトル狭窄 の影響を受けてしまう. この隣接パスの add/drop 処 理時に生じるスペクトル狭窄の回数は波長割り当てア ルゴリズムを適用することで制御することができるた め信号品質はノードホップ数に依存しない. したがっ て、光パスの伝送距離のみを考慮することで最適な変 調方式を割り当てることが可能となる.これまでに説 明した手法の特徴を図2にまとめた.

2. 伝送特性解析

図3に示す非線形系伝送路モデルを用いて伝送シミ ュレーションを行い、400Gps 信号の伝送可能距離及 びホップ数を評価した.使用した変調方式は32Gbaud DP-QPSK \times 4, 43Gbaud DP-8QAM \times 2, 32Gbaud DP-16QAM×2 とした. 16QAM と QPSK のサブキ ャリア間隔は 37.5GHz, 8QAM のサブキャリア間隔 は 50 GHz とした. 各サブキャリアのスペクトルはロ ールオフ率 0.05 のルートコサインロールオフフィル ターにより成形される.入力パワーを最適化した後, 信号は WSS を経由して伝送リンクへと入力される. 1スパンは 100 km の SMF と EDFA からなる. SMF の損失係数,波長分散パラメータ,非線形係数はそれ ぞれ, 0.2 dB/km, 16 ps/nm/km, 1.5 /W/km とし, EDFA の雑音指数は 5 dB とした. 損失, 波長分散, ファイバ非線形効果の相互作用はスプリットステップ フーリエ法を用いて計算した.nスパン伝送させた後, 信号は隣接ノードに到達する.本研究では n=2,6 す なわちノード間距離を 200 km, 600 km として数値実 験を行った. ノードは route-and-select 型で接続され た複数の WSS からなる. WSS のピーク損失は 6.5 dB とした. WSS の通過帯域は、割当帯域幅を持つ矩 形関数と10GHzの3dB帯域幅を持つガウス関数と の畳み込みによって表現されている. 複数ノードを経 由した後、目標の信号はドロップされディジタルコヒ ーレント受信器で復調される.復調はディジタル信号 処理によって行われ、ビット誤り率(Bit-error ratio: BER)が計算される. 前方誤り訂正(FEC: Forward

 $\mathbf{2}$

High-capacity photonic networks based on adaptive optical-path control

error correction)を考慮して,信号が BER<1.0×10⁻² を満たす限界を最大距離またはホップ数として求めた.

図4はパス帯域をそれぞれ 75 GHz と100GHz に 設定し,32Gbaud DP-16QAM×2 の信号を 800 km 伝送させた時のコンスタレーションと BER を示して いる.パス帯域が 75 GHz の場合,帯域狭窄回数が増 加する毎に信号品質が劣化していることが分かる.

図5はそれぞれノード間距離が200km,600kmの 時の伝送特性を示しており,縦軸は伝送可能な最大の ノードホップ数または距離を,横軸はスペクトル狭窄 化の回数を示している.図5が示す通り,超高密度波 長分割多重システムにおいてはノードホップ数が厳し く制限され,ノードホップ数と距離に応じて適切なパ ス帯域を割り当てる必要がある.一方で,我々が提案 する Grouped Routing ネットワークでは隣接パス add/dropの回数,すなわち帯域狭窄回数を制限するこ とが出来るため,変調方式を決定するためにノードホ ップ数を考慮する必要はない.このように提案手法は 超高密度波長分割多重システムの導入におけるパス割 り当ての処理を簡素化することが出来る.

Path bandwidth	100 GHz			
The number of add/drop operations	0	2	4	6
Constellation diagram				
BER	0.00074	0.00078	0.00082	0.00082
Path bandwidth	75 GHz			
Constellation diagram				
BER	0.0011	0.0037	0.0136	0.0361

図5 伝送特性

3. ネットワーク特性解析

提案手法の有効性を確かめるために静的ネットワー クシミュレーションを行った.以下の3つの手法(図 2 参照) について光ファイバの利用効率を数値実験に より検証した. A)距離適応変調を用い, スペクトル狭 窄化の影響を受けないチャネル間隔を設定し、ルーテ ィングは光パス単位で行う.B)距離とノードホップ数 に応じて変調方式とパス帯域を選択する手法を用い, ルーティングは光パス単位で行う. C)距離適応変調と Grouped Routing を用い, 隣接パス add/drop 回数は 1回に制限した.利用可能な帯域をC帯(4.4 THz, 352 スロット)とした. また, 使用したネットワークトポロ ジとその特徴を図6に示す.4×4トポロジについては ノード間距離を 200km と 600km の二通りについてデ ータを取得した. トラフィック需要は一様に発生する ものとした. また, 光パスの容量は全て 400Gbps と し,変調方式は 32Gbaud DP-QPSK×4, 43Gbaud DP-8QAM×2, 32Gbaud DP-16QAM×2 を想定した. 提案手法である Grouped Routing の各グループの幅 は48スロットに設定し、スペクトル狭窄の影響を緩 和するために GRE 間に 2 スロット(25GHz)のガード バンドを挿入した.また、図5の伝送特性から得られ るそれぞれの手法が要するスロット数を図7にまとめ た.図8は変調方式と割り当てチャネル帯域の対応を

High-capacity photonic networks based on adaptive optical-path control

示している.手法毎の選択範囲から伝送特性を満たし た上で周波数利用効率を最大化するように変調方式と 割り当てパス帯域を選択する.ここでは周波数利用効 率が高い順にアルファベットがつけられている.

	4 × 4	JPN48	Pan-European Network
			X
The number of nodes	16	48	26
Maximum hop count	6	14	6
Average link length (length in simulations)	(200 or 600 km)	154 km (200 km)	627 km (600 km)

図6 使用したネットワークトポロジとその特徴

		А	В	С
Modulation format	The number of subcarriers	The number of assigned slots ^a		
32-Gbaud DP-QPSK	4	14	12,13 or 14	12
43-Gbaud DP-8QAM	2	10	8, 9 or 10	8
32-Gbaud DP-16QAM	2	8	6, 7 or 8	6

High

図7 必要スロット数

rissigned build width

図8 変調方式及び割り当てチャネル帯域の優先順位

図 9, 図 10, 図 11, 図 12 は各ネットワークトポロ ジに対するシミュレーション結果を示している,縦軸 は手法Aにおいて必要なファイバ数を1として規格化 したものである.距離とノードホップ数に適応して変 調方式とパス帯域を割り当てる事により 4× 4(200km) では 14.3%, 4×4(600km) では 12.7%, JPN48 では 10%, Pan-European では 13.5%のファ イバ数の削減が可能になる.一方で距離適応変調と Grouped Routing を併用することでファイバ数を 4× 4(200km) では 18%, 4×4(600km) では 15.4%, JPN48 では 17.8%, Pan-European では 16.3%も削減 することができる. 伝送距離が短い場合か最大ホップ 数が大きい場合,帯域狭窄による劣化の影響がファイ バの非線形性による劣化の影響よりも大きくなるため 従来手法との削減比が大きくなっていることが分かる.

The average number of paths between each node pair

図9 必要光ファイバ数比(4×4:200km)

The average number of paths between each node pair

The average number of paths between each node pair

図 11 必要光ファイバ数比(JPN48)

High-capacity photonic networks based on adaptive optical-path control

The average number of paths between each node pair

図 12 必要光ファイバ数比(Pan-European)

伝送特性とその結果に基づく三つのネットワーク設計手法の数値実験を踏まえた特徴を図13にまとめた. 手法Aはパス割り当ての処理は単純だがファイバ利用 効率が手法B,Cより低い.手法Bは、ファイバ利用 効率は高いが距離とノードホップ数の両方を考慮する 必要があるため多くの伝送特性解析を要する.一方で 我々が提案する手法Cでは大幅なファイバ利用効率の 向上が実現できるうえに、ホップ数に適応することな く高密度なネットワークを実現できる.

	А	В	С
Routing unit	Path	Path	Group (GRE)
Impairment- related metrics	Distance	Distance & hop count	Distance
Adaptive assignment	Modulation	Modulation & bandwidth	Modulation
Fiber utilization	Fair	Good	Excellent

図13 数値実験を基にした手法の比較

おわりに

本稿では、距離適応変調と Grouped Routing を組み 合わせた手法を提案し、伝送特性解析と、その結果に 基づいたネットワークシミュレーションによりその有 効性を証明した.また、Grouped Routingの導入によ りファイバ利用効率が大幅に向上するだけではなくパ ス割り当ての処理を複雑にすることなく距離適応変調 方式を超高密度波長分割多重システムに適用できるこ とを示した.

参考文献

 K. Kikuchi, "Fundamentals of coherent optical fiber communications," IEEE/OSA J. Lightwave Technology, Vol. 34, pp. 157-179, 2016.

- G. Bosco et al., "On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers," IEEE/OSA J. Lightwave Technology, Vol. 29, pp. 53-61, 2011.
- [4] Y. Mori et al., "Joint pre-, inline-, and postcompensation of spectrum narrowing caused by traversing multiple optical nodes," Proc. European Conference on Optical Communication (ECOC), paper P1.SC3.45, 2017.
- [5] Y. Terada et al., "Highly spectral efficient networks based on grouped optical path routing," OSA Optics Express, Vol. 24, pp. 6213-6228, 2016.

この研究は、平成28年度SCAT研究助成の対象と して採用され、平成29~令和元年度に実施されたも のです。