A study on an optical processing unit using Si ring resonators

佐藤 孝憲 (Takanori SATO, Ph. D.) 北海道大学 大学院情報科学研究院 准教授 (Associate Professor, Hokkaido University) IEEE 電子情報通信学会 アメリカ光学会 他 研究専門分野:シリコンフォトニクス 光通信デバイス 光導波路解析

あらまし

現在の電子デバイスの演算性能は既に限界に達しつ つある。その突破口の1つとして、光信号を電気的に 制御して演算を行う光演算回路素子が近年注目されて いる。光演算回路は電子回路に比べて単位時間当たり の演算量が多く、超高速演算の可能性を有している。 しかし、光回路素子のサイズの制約から集積度の増加 が難しく、演算次数の拡大が困難であった。そこで本 研究では、容易に作製可能で小型な光素子の1つであ るシリコンリング共振器に着目し、これを可変パワー 分配器として動作させることで、光演算素子の小型化、 すなわち演算次数の拡大を試みた。具体的には、光演 算回路の1つとして光全加算器を取り上げ、リング共 振器を用いた構成例を提案し、その原理検証を行った。 これと並行して、シリコンリング共振器の試作と測定 実験を行い、光全加算器に組み込む可変パワー分配器 として動作可能であることを確認した。

1.研究の背景

電子デバイスの演算性能の限界突破に向けて、光信 号を用いた演算回路素子の開発が活発化している。特 に、電子デバイスと光デバイスの良いとこどりが可能 な光電融合デバイス(光信号を電気的に制御するデバ イスの総称)は、集積度や消費電力等の観点から既存 のデバイス性能を大きく上回る可能性を秘めており、 いかに電子デバイスと光デバイスが協調させられるか が鍵となる。このような思想をベースとして革新的技 術の創出を目指す「IOWN 構想」と呼ばれるものが 2019年に NTT から発表されるなど、多岐にわたる分 野で注目を集めている。中でも、シリコンフォトニク ス*1 に関する研究が数多く報告されており、既存の電 子回路における情報伝送を光で行う光インターコネク トに留まらず、光信号で計算を行う光演算回路の研究 に対する期待も高まっている状況である。例えば、N 入力 N出力の光導波路を用意して、それらを適切に干 渉させることで、任意の入出力変換が可能であり、こ れを行列積演算と見立てて計算を行う光回路が提案さ れている[1]。この光行列積演算回路は、光信号を用い たアナログ演算回路の一種である。また、2 進数の演 算が可能な全加算器をシリコン導波路で構成したもの が報告されている[2]。光全加算器は、入力した光信号 が電気的に制御された導波路デバイスを通過するだけ で2進数の計算が行えるものであり、光の速度で演算 が実行できるという高速・低遅延な特性に期待が寄せ られている。光全加算器は、光信号を用いたディジタ ル演算回路の一種であり、アナログ演算に比べると電 子デバイスとの親和性が高いと言える。

しかし、電子デバイスと比較すると光デバイスの素 子サイズはかなり大きく、可変光位相シフタの役割を 果たすマイクロヒータ付直線導波路は100 µm 長程度、 可変パワー分配器の役割を果たすマッハツェンダ干渉 計^{*2}は200 µm 長程度が一般的に必要とされる。その ため、演算次数の拡大という点が課題であった。これ を解決するためには、基本的な導波路素子の小型化が 必要不可欠である。

2. 研究の目的

本研究では、申請者がこれまでに取り組んできた光 共振器設計のノウハウを生かして、シリコンリング光 共振器を用いた光演算回路設計を行い、飛躍的な集積 度の向上、および、演算次数の拡大を目指している。 シリコンリング共振器は一般的に、最小半径 5~10 µm 程度の半径を持つリング状の導波路で構成され、共振 特性の温度依存性も敏感なため、素子の小型化だけで なく省電力動作も期待できる。アナログ演算回路にリ ング共振器を導入した場合の理論検討は既に実施済み

A study on an optical processing unit using Si ring resonators

[3]であり、本研究では、これをディジタル演算回路で ある全加算器に導入する場合の適用可能性について検 討し、シリコンリング共振器ベースの全加算器の実現 可能性を追究する。

3. 研究の方法、研究の結果

3.1 リング共振器を用いた 1bit 全加算器[4]

図1 リング共振器を用いた1bit 全加算器の構成[4]

図1に、提案したリング共振器を用いた1bit全加算 器の構成[4]を示す。ここで、1bit全加算器は $x_i + y_i + c_i = 2 \cdot c_{i+1} + s_i(x_i, y_i, c_i, s_i \in \{0, 1\})$ のように計算を行 う回路であり、図中の c_i, s_i は光信号の強度に対応し、 灰色の線(光導波路)を進みながら、近接した2段リ ング共振器と干渉して上下の導波路を行き来する。リ ング付近にラベル付けされている x_i, y_i は、電気的な共 振状態の制御状態に対応し、図2(a)のように共振させ ると光信号が上下の導波路を行き来し(分配比0:1)、 図2(b)のように共振させないように制御すると光信号 が上下の導波路を行き来できなくなる(分配比1:0)よ うな特性を有する。 α_i は、演算次数によって定義され る適切なパワー分配比で光を上下に分けるものである。 なお、灰色の線が交差している部分は交差導波路と呼 ばれるものであり、3次曲線の導波路形状とすること で交差時の透過率を改善している。それ以外の具体的 な構造パラメータは文献[4]中に示されている。

このような構成で全加算器の動作が可能かを確認するため、2 次元有限要素法に基づく電磁界解析を行った。図 3 は、 $c_i = 1$, $x_i = 0$, $y_i = 0$ としたときの光強度分布を示している。なお、 α の部分は等分岐するよう

A study on an optical processing unit using Si ring resonators

に設定されており、電気制御によって対象となるリン グ部だけ屈折率が変化して共振状態を制御できると仮 定している。入力された光信号と電気信号に基づいて、 適切な出力 *si* = 1, *ci*+1 = 0 が出力されていることがわ かる。これを多段にして接続すれば、任意の次数 *N*bit の全加算器も構成可能である。ここで、1bit あたりの 提案素子サイズはおよそ 60 µm × 100 µm であり、こ れを通常のマッハツェンダ干渉計で構成しようとする と 600 µm 長程度は必要になると見込まれることから、 (ヒータのクロストークなどを無視すれば)単純計算 でサイズを 1/10 程度に抑えられるものと試算できる。

ところで、リング共振器を用いたデバイスは、小型 できるという利点がある一方で、共振という特性上、 定常状態に至るまでに遅延時間が発生するという欠点 がある。そこで、2次元有限要素法を用いた時間領域 解析を行い、共振器の応答時間を調べた。

図4は、30ps おきに x, yiに応じた屈折率変化が与 えられたときの光信号出力の時間変化を示している。 ここでは、光共振器で共振するまでにかかる時間や、 共振してから非共振状態に至るまでの時間を調べるた め、電気的な制御にかかる時間は無視できるものとし て、即座に屈折率が変化するような状態を仮定してシ ミュレーションを行っている。結果からわかるように、 共振・非共振の切り替えで出力に振動が見られるもの の、およそ 10 ps 程度で切り替えが完了しており、そ れほど大きな遅延は発生せず、屈折率変化にかかる遅 延が支配的になるものと予想される。つまり、これに 電気的な制御による遅延が上乗せされることになり、 キャリアプラズマ効果などを用いた電気的制御をかけ ることで、高速な演算が可能になると見込まれる。

3.2 リング共振器によるマッハツェンダ干渉計の試 作[5]

図5 リング共振器を用いたマッハツェンダ干渉計の構造図[5]

3.1 では、理論提案と数値計算による原理検証にと どまっており、パワー分配部に2段リング共振器を配 置して動作させることを想定していた。この検討と並 行して、リング共振器を用いたマッハツェンダ干渉計 の単体試作を行い、パワー分配動作の測定実験を行っ た。図 5(a), (b)に試作したリング共振器の構造図を示 す。図 5(a)は、方向性結合器による 3dB 分配器をリン グ共振器の両端に配置してマッハツェンダ干渉計を構 成したものである。リング共振器において、下部アー ムに対する相対的な位相変化が0であれば、Inputポ ートから入射したパワーはThrough ポートに100%出 力され、位相変化が0でないときは、その位相変化量 に応じた分配比で Through ポートおよび Drop ポート から出射される。一方図 5(b)は、3.1 で検討していた 2 段リング共振器と同じ構成であり、2 つのリングと上 下の導波路を近接させる距離を適切に設定することで 共振ピークがフラットな透過スペクトルを得ることが できる。具体的な構造パラメータは文献[5]中に示され ている。

図 6(a), (b)に、図 5(a), (b)の構造の透過スペクトル を示す。図中の青・赤色の実線は、それぞれ実験結果 によって得られた Through・Drop ポートへの透過率 である。また、これらの測定結果を再現する解析値を 調べるため、モード結合理論と遺伝的アルゴリズムを 用いて構造パラメータを求め、そのフィッティングカ ーブを描画したのが橙色の点線と黒破線である。図

A study on an optical processing unit using Si ring resonators

6(a)より、左右非対称なスペクトルがみられること、 および、Through・Drop ポートの共振ピークがそれぞ れ-10, -40 dBと非対称であることから、共振状態に おけるわずかな損失が影響していると考えられる。一 方、図 6(b)では理想的な共振スペクトルが確認できる。 Through・Drop ポートへの透過率は、1536~1538 nm の範囲で 0 dB から-20 dB まで変化させることが可能 であることが確認できる。いずれの構成でも演算回路 経適用可能であると考えられるが、2 段リング共振器 のほうが損失の影響が小さく、制御が容易であると考 えられる。

図6図5の構造における透過スペクトル[5]

図 5(b)の構造の電気的制御による透過特性変化を調 べるため、リング上部に TiN マイクロヒータを配置し てこれに電流を流した場合の測定実験を行った。ヒー タの加熱より導波路の温度が上昇し、これに伴って屈 折率が変化すると、共振波長が長波長側にシフト(レ ッドシフト)する。したがって、電流の増減によって 光分配比を制御することができる。図7に、電流と透 過率の関係を表す測定結果を示す。ヒータの過熱によ り分配比を調節することができている。

図 7 図 5(b)の構造におけるマイクロヒータ電圧印加時の入出 力特性の変化

4. 将来展望

本検討では、3.1 のデバイスの構成提案と数値解析 の原理検証、ならびに、3.2の単一共振器の試作・測定 による1次的な原理実証までを行った。これらを組み 合わせることで、大幅に演算次数を拡大することがで きることが明らかとなった。例えば、単純に図1の構 成を N bit 分右上につなげていくことを考えると、全 体のデバイス長は 60×N µm となり、例えば 16 mm 長のチップであれば単純計算で 260 bit まで拡大でき ることになる。ただし、今回検討した屈折率制御は、 初期検討としてマイクロヒータを使ったものであり、 電気的な制御が極めて遅い方法である。電子デバイス の性能を上回るためには、キャリアプラズマ効果等を 用いた高速制御の検討も必要であり、今後の課題と考 えている。屈折率変化にかかる遅延もクリアできれば、 光演算が電子デバイスの演算性能を上回ることができ、 既存の電子デバイスの性能を押し上げる補助装置のよ うな役割を果たすと考えられる。

おわりに

本研究は、超高速演算の可能性を有する光全加算器 に着目し、集積度の問題を改善するための一解決策と してリング共振器を用いたデバイス構成を提案し、集 積度の向上、ならびに、演算次数の拡大に向けた検討 を行った。マッハツェンダ干渉計を2段リング共振器 で構成することでデバイスの小型化が可能なことを示

A study on an optical processing unit using Si ring resonators

し、数値解析を用いて原理検証を行うとともに、リン グ共振器の単体試作による原理実証も進めてきた。こ れらの結果から、提案するシリコンリング共振器の実 現可能性が示され、演算次数の拡大が可能であること も明らかにした。

用語解説

- *1 電子デバイスのプラットフォームであるシリコン 材料を用いて光デバイスを作製したデバイスや、こ うした技術そのものを総称して「シリコンフォトニ クス」と呼ばれる。
- *22入力2出力の光等分配器と、これらを2つの間に 2本の遅延線を用意して、これらの遅延線に異なる 遅延(位相遅れ)を発生させることで任意のパワー 分配比として出力する光導波路の基本素子の1つ。

参考文献

- A. Ribeiro, A. Ruocco, L. Vanacker, and W. Bogaerts, "Demonstration of a 4×4-port universal linear circuit," *Optica*, vol. 3, no. 12, pp. 1348–1357, Dec. 2016.
- [2] 新家 昭彦,石原 亨,野崎 謙悟,北 翔太,井上 弘士,G. Cong,山田 浩治,納富 雅也, "光パスゲ ート論理に基づく光波長多重並列加算器(2) ~熱 光学スイッチによる動作実証~," 第79回応用物 理学会秋季学術講演会, p. 19p-225B-4, 2018.
- [3] <u>T. Sato</u> and A. Enokihara, "Ultrasmall design of a universal linear circuit based on microring resonators," *Opt. Express*, vol. 27, no. 23, pp. 33005–33010, Nov. 2019.
- [4] <u>T. Sato</u> and A. Enokihara, "An electro-optic full adder designed with coupled Si ring resonators for highly dense integration," *Results Opt.*, vol. 8, p. 100230, Aug. 2022.
- [5] 佐藤 孝憲, 榎原 晃, "シリコンリング共振器を用 いた光演算回路の飛躍的な演算次数増大に向けた 検討,"電子情報通信学会総合大会, C-3/4-7, 2020.

この研究は、令和元年度SCAT研究助成の対象として採用され、令和2~3年度に実施されたものです。