Cohort-based Transmit Power Control and Gradient Recovery for Over-The-Air Federated Learning

 江 易翰(Yi-Han CHIANG、Ph. D.)
大阪公立大学 大学院工学研究科 電気電子システム工学専攻 助教
(Assistant Professor, Osaka Metropolitan University, Department of Electrical and Electronic Systems Engineering, Graduate School of Engineering)
IEEE 電子情報通信学会

研究専門分野:通信工学 情報ネットワーク

あらまし

無線通信環境における空中計算(OTA: Over-The-Air Computation)を利用した分散型機械学習である OTA 連合学習(Federated Learning)は、エッジAI や医療 IoT などへの応用が大いに期待されている.し かし、OTA 連合学習の勾配集約と回復が無線チャネル 品質に大きな影響を受けてしまう問題がある.本研究 では、無線チャネル品質が近いエッジデバイスとなっ たコホートに基づいて送信電力制御と勾配回復の手法 を提案する.まず、コホートを構築し、構築されたコ ホートは次の通信ラウンドでスケジューリングされる. 第2に、構築された各コホートにおいて、最も弱い無 線チャネル品質を持つエッジデバイスが送信電力バジ ェットを使い切るように、デバイスは個別に送信電力 をスケーリングする. 第3に、勾配集約の後、コホー トベースで適用された送信電力と無線チャネル品質の 情報を使用してローカル勾配を回復する.提案法の性 能を評価するために、テスト精度の観点からいくつか の比較手法と比べる. さらに、提案法の性能が様々な システムパラメータの下でどのように変化するかを検 証する.

1. 研究の目的

近年、無線通信環境における無線信号の重畳特性を 活用した空中計算(OTA: Over-The-Air Computation) に基づいた OTA 連合学習が注目されている. しかし、 先行研究では、無線チャネル品質が近いエッジデバイ スのサブセット、すなわちコホート(Cohort)を構築 することで OTA 連合学習の学習性能向上に寄与する ことを軽視している.本研究では、OTA 連合学習にお けるコホートベースの送信電力制御と勾配回復の手法 を提案し、シミュレーションで比較手法に対する優位 性を示す.

2. 研究の背景

連合学習*1において、最もよく知られたアルゴリズ ムである Federated Averaging (FedAvg) [R1]の仕組 みは、モデル配布、ローカル学習、モデル集約、勾配 平均という4つのステップから構成されている.まず モデル配布では、パラメータサーバ(以下は「サーバ」 という)はグローバルモデルを全てのエッジデバイス (以下は「デバイス」という)に配布する.次に、ロ ーカル学習では、各デバイスは自身が所有するローカ ルデータセットを使用してローカルモデルを更新する. モデル集約では、サーバは選択されたデバイスからロ ーカルモデルを集約し、集約されたローカルモデルの 平均に基づいてグローバルモデルを更新する.これら の手順を1回の通信ラウンドとし、予め定義された収 束基準が満たされるまで、複数回の通信ラウンドにわ たって進行する.

従来の通信手法では、基地局(Base Station)が多 数のデバイスから無線信号を受信して処理する場合、 まず各デバイスからの無線信号を時空間的に分けて受 信し、最後に統計処理がなされる.つまり、通信タス クと計算タスクが完全に分離されている.この方法で は、デバイスの数が増加した場合に、膨大な通信リソ ース消費の恐れがある.一方、無線チャネルのマルチ アクセスの特性を活用した空中計算*2は、図1に示す ように、無線信号の重ね合わせによって合計または平 均を計算することが意図されている.この方法では、 どのデバイスからどのデータが送られてきたかを区別 することは不可能である.しかし、そのような情報を

Cohort-based Transmit Power Control and Gradient Recovery for Over-The-Air Federated Learning

必要としない場合、つまりデータの合計値などの統計 的な値だけを必要とする場合には、空中計算はデータ の送受信に要する通信リソースを大幅に減少する.空 中計算を利用した OTA 連合学習では、サーバ側で行 われる計算は平均などの統計演算のみであり、どのデ バイスの情報を利用するかを知る必要がないため、通 信リソース消費を削減することができる.

3. システムモデル

各通信ラウンドtにおいて、サーバはまずデバイスの サブセット $J(t) \subseteq J$ をスケジューリングし、スケジュ ーリングされたデバイスは指定された周波数帯域で同 期して更新されたローカルモデルをアップロードする. 簡潔にするため、コホートサイズ|J(t)| = Nを満たす. また、各デバイスjが持つローカルデータセットを $D_j =$ $\{(\mathbf{x}_j^i, y_j^i)\}$ とする.ただし、 \mathbf{x}_j^i はローカルデータセットを D_j のi番目の特徴量、 y_j^i はそれに対応するラベルである. ここで、ローカルデータセットに重複がないことを確 実にするために、 $j' \neq j''$ の場合、 $D_{j'} \cap D_{j''} = \emptyset$ である とする.また、データプライバシーを保護するため、 D_j はサーバに送信されない.その代わりに、データセ ットの大きさ $|D_j|$ がサーバに共有される.さらに、すべ てのデバイスがローカル学習に使用するニューラルネ ットワークの構造は同一であると仮定する.

各通信ラウンドtにおいて、サーバは以下の4つのス テップに従ってデバイスと通信を行う(図1を参照).

図1:OTA 連合学習の仕組み

 モデル配布:まず、サーバは基地局を通してグ ローバルモデルw(t)を通信ラウンドtでスケジ ューリングされたコホート*J(t)*へ送信する.ただし、**w(0)**はランダムなベクトルで初期化される.

 ② ローカル学習:次に、各デバイス j ∈ J(t)は、 配布されたグローバルモデルw_j(t)と自身の持 つデータセットD_jを用いてローカルモデル w_j(t)を以下の式で更新する.

$$\mathbf{w}_j(t) = \mathbf{w}_j(t-1) - \eta \mathbf{g}_j(t),$$

 $\forall j \in \mathcal{J}(t), 1 \le t \le T$

ここで η は学習率を表し、ローカル勾配 $\mathbf{g}_j(t)$ は 以下の式で計算される.

$$\mathbf{g}_{j}(t) = \frac{1}{\left|\mathcal{D}_{j}\right|} \sum_{i \in \mathcal{D}_{j}} \nabla f\left(\mathbf{w}(t), \mathbf{x}_{j}^{i}, \mathbf{y}_{j}^{i}\right)$$

$$\forall j \in \mathcal{J}(t), 1 \le t \le 7$$

ただし、 $\nabla f(\mathbf{w}(t), \mathbf{x}_{j}^{i}, \mathbf{y}_{j}^{i})$ はロス関数を示す.

③ モデル集約:ローカル学習が完了すると、
ĝ_j(t) = g_j(t)/||g_j(t)||のようにローカル勾配の
正規化を行う.そして、デバイスjは以下の式で
送信信号を構成する.

$$\mathbf{s}_{j}(t) = \sqrt{p_{j}(t)} \tilde{\mathbf{g}}_{j}(t), \forall j \in \mathcal{J}(t), 1 \le t \le T$$

ただし、 $p_j(t) \leq P_j^{\max}$ は送信電力を表す.その後、コホート内のデバイスは基地局へ同時に信号を送信し、受信信号は以下のように表される.

$$\mathbf{r}(t) = \sum_{j \in \mathcal{J}(t)} h_j(t) \, \mathbf{s}_j(t) + \mathbf{z}(t), \forall 1 \le t \le T$$

ここで、 $h_j(t)$ はデバイスjと基地局間の無線チャネルを、 $\mathbf{z}(t)$ ~ $CN(0,\sigma^2)$ は雑音電力 σ^2 の加算性白色ガウス雑音を表す.

④ 勾配回復:勾配集約が完了すると、受信信号は サーバへ転送される.ローカル勾配を受信信号 から適切に復元するために、グローバル勾配を 以下の式から得る.

$$\mathbf{g}(t) = \frac{\mathbf{r}(t)}{\xi(t)}, \forall 1 \le t \le T$$

ここで、*ξ(t)*は勾配回復係数を表す.最後に、 グローバルモデルが以下のように更新される.

 $\mathbf{w}(t) = \mathbf{w}(t-1) + \mathbf{g}(t-1), \forall 1 \le t \le T$

Cohort-based Transmit Power Control and Gradient Recovery for Over-The-Air Federated Learning

4. 提案法

通常の連合学習とは異なり、最大送信電力制約や無 線チャネルの品質は、OTA 連合学習の学習性能に大き な影響を与える. OTA 連合学習の通信ラウンド間で、 デバイスと基地局間の無線チャネル品質は時変であり、 またデバイス間での無線チャネル品質のばらつきとデ バイスの最大送信電力制約により、より良い無線チャ ネル品質を持ったデバイスからの信号が減衰してしま う. これらの問題に対処するため、本研究では動的に コホートを構築し、コホートベースの送信電力制御と 勾配回復 (CRAIC: Cohort-based Transmit Power Control and Gradient Recovery) アルゴリズムを行う 手法を提案する. 提案法は以下のコホート構築、送信 電力制御、勾配回復の3つのステップから構成される.

コホート構築:まず、デバイスの集合3からランダムに一つのj*を選択する.次に、

 $\left|\left|h_{j}(t)\right|-\left|h_{j^{*}}(t)\right|\right|, \forall j \in \mathcal{J}$

を計算し、昇順ソートしたものをQ(t)とする. Q(t)の先頭からN個の値に対応するjをコホートJ(t)とする.

 ② 送信電力制御:各通信ラウンドtにおいてコホ ートJ(t)内のデバイスは異なる最大送信電力 やチャネル係数を持っている.ローカル勾配は グローバルモデルに対する変化量を表すので、 デバイス間で、送信されるローカル勾配の相対 的な大きさのオーダーを保持しながら適切に 集約されるように、スケジューリングされたデ バイスの送信電力を調整する必要がある.しか し一方で、コホート全体の送信電力が不足して いる場合、信号がノイズのレベルまで減衰し、 発散してしまう.そこで、以下のように送信電 力制御の手法を設計する.以下で√P_j(t) |h_j(t) | を合成チャネル係数と呼ぶことにする.

まず、コホート $\mathcal{J}(t)$ を最大送信電力で送信し た場合の合成チャネル係数の 2 乗の値で昇順 にソートして $\mathcal{J}^{\circ}(t) = \{j_{1}^{\circ}, ..., j_{N}^{\circ}\}$ を作成する.次 に、 $\mathcal{J}^{\circ}(t)$ の先頭からc番目のデバイスまでの合 成チャネル係数の 2 乗の合計値を次のように 定義する.

$$\Omega_{c}(t) = \sum_{n=1}^{c} (N-n+1) \left(\sqrt{P_{j_{N}^{\circ}}^{\max}} |h_{j_{N}^{\circ}}(t)|^{2} - \sqrt{P_{j_{n-1}^{\circ}}^{\max}} |h_{j_{n-1}^{\circ}}(t)|^{2} \right), \forall 1 \le c \le N, 1 \le t \le T$$

次に、 $c = \{N, ..., 1\}$ に対して、あらかじめ決め たノイズに対する値 $\Gamma \sigma^2$ を上回る場合は、 c^* を 定義し、下回るまでこの処理を繰り返す.そし て、 $c = \{1, ..., c^* - 1\}$ のデバイスは最大送信電 力を用い、残りのデバイスは次のように送信電 力を決定する.

$$p_{j_{c}^{\circ}}(t) = \frac{\Gamma \sigma^{2} - \Omega_{c^{*}-1}(t)}{(N - c^{*} + 1) |h_{j_{c}^{\circ}}(t)|^{2}} + \frac{P_{j_{c^{*}-1}^{\circ}}^{\max} |h_{j_{c^{*}-1}^{\circ}}(t)|^{2}}{|h_{j_{c}^{\circ}}(t)|^{2}}, \forall c^{*} \le c \le N, 1 \le t \le T$$

ここで、*c* = *N*の場合にも*Fσ*²を下回る場合は、 コホート*J*(*t*)内の全てのデバイスが最大送信 電力を用いる.このように送信電力制御を設計 することで、コホート全体の送信電力が不足し ている場合は最大送信電力を用い、そうでない 場合は、最大限デバイス間の合成チャネル係数 の値を一定にすることで、各デバイス勾配を適 切なオーダーを保ったまま集約することを目 指す.

③ 勾配回復:勾配の集約は、無線チャネル品質や ノイズによって大きく変動する可能性がある. 集約されたローカル勾配が元の勾配より小さ すぎると、OTA 連合学習プロセスの収束が遅 くなる可能性がある.逆に、集約されたローカ ル勾配が大きすぎると、学習データの分布をう まく表現できなくなり、OTA 連合学習プロセ スが発散してしまう可能性がある.したがって、 ローカル勾配を元の勾配と同程度の大きさに 回復することが重要であり、それによって集約 されたローカル勾配をローカル学習に適切に 利用できるようにする.このため、通信ラウン ドtにおける勾配回復係数を以下のように定義 する.

Cohort-based Transmit Power Control and Gradient Recovery for Over-The-Air Federated Learning

$$\xi(t) = \frac{1}{|\mathcal{J}(t)|} \sum_{j \in \mathcal{J}(t)} \sqrt{p_j(t)} |h_j(t)|, \forall 1 \le t \le T$$

5. シミュレーション

以下では、デフォルトのパラメータ設定を示す.128 個のデバイスは、基地局から測ってd^{min}=35mと d^{max} = 1kmの範囲に一様に分布している. コホートサ イズは16、通信ラウンド数は100とする.各デバイス は3つの全結合層からなるニューラルネットワークを 用いてローカルモデルを更新する. なお、最適化手法 には Adam、ロス関数に Cross-Entropy、バッチサイ ズは 64、学習率には 0.0001 を用いる. また、デバイ ス間の学習データのラベルの分布がどの程度異なって いるかを示す. MNIST データセット[R2]をデバイス へ振り分ける際、ディリクレ分布(Dirichlet Distribution) [R3]という確率分布に従って配分する. ディリクレ分布のパラメータαはデータの不均一度を 示す. α→∞の場合、デバイス間の配分された学習デ ータのラベル分布は独立同分布 (IID: Independent and Identically Distributed) に近づく. 一方、 $\alpha \rightarrow 0$ の場合は、ラベル分布は non-IID 度合いが強まる.

提案法の性能を評価するため、以下の比較手法と比べる.

- Error-Free (EF): EF は FedAvg を基にして おり、各通信ラウンドにおいてJからランダム にN個のデバイスが選択され、ローカル勾配は 完全な状態で集約される.空中計算がないため、 パスロスやノイズも存在せず、送信電力制御や 勾配回復も必要ない.
- Cohort-based Power Scaling with Adaptive Transmit Powers (CPS-A): CPS-A は空中計 算において、各通信ラウンドにおいて*3*からラ ンダムにN個のデバイスが選択され、最大送信 電力制約に基づいて送信電力制御される. チャ ネル反転を基にした送信制御アルゴリズム [R4]と同じである. 勾配集約の後、提案した勾 配回復が適用される.
- Cohort-based Power Scaling with Maximum Transmit Powers (CPS-M): CPS-Mは CPS-Aと似ているが、各通信ラウンドにおいて選択

された全てのデバイスが自身の持つ最大送信 電力で送信する.つまり、送信電力制御は行わ れない.

図 2:ディリクレ分布によるトレーニングデータの振り分け(左: a = 10²⁰、右: a = 0.1)

図 2 では、ディリクレ分布によって MNIST データ セットの学習サンプルが 128 個のデバイスにどのよう に分配されるかを示している.図 2 の縦軸は MNIST データセットの 0 から 9 までのラベルを、横軸は 1 か ら 128 番目までのデバイスを示し、緑色が濃い部分に 多くの学習サンプルが振り分けられている. $\alpha = 10^{20}$ の場合、各ラベルの学習サンプルがほぼ均等にデバイ スに分布するため、データ分布はほぼ IID となる.逆 に $\alpha = 0.1$ では、各ラベルの学習サンプルがデバイス間 でより不均一になり、データ分布がより non-IID にな る傾向があることがわかる.

北較(左: $\alpha = 10^{20}$ 、右: $\alpha = 0.1$)

図3に、CRAICと他の送信電力制御手法との正解 率の比較結果を示す.IID、non-IIDともにCRAICは CPS-AとCPS-Mに対して高い正解率を達成している. これは、CRAICによって、類似したチャネル係数を持 つデバイスがコホートに選択され、かつノイズに対す る適切な送信電力を適用できているからであると考え

Cohort-based Transmit Power Control and Gradient Recovery for Over-The-Air Federated Learning

られる. さらに、CRAIC は EF に近い正解率を達成す ることができている. なぜなら、それぞれの大きさの オーダーをあまり変えないようにローカル勾配を集約 することができ、その一方で、集約されたローカル勾 配は元のものと同じようなレベルまで回復することが できるからである.

図 4 : *d*^{max}を変化による CRAIC アルゴリズムの性能 評価 (左 : *α* = 10²⁰、右 : *α* = 0.1)

図4は、デバイスの位置がCRAICの性能にどのように影響するかを示している.デバイスが基地局に近い位置にある場合(すなわち、d^{max}が小さい場合)、集約されたローカル勾配がノイズよりもはるかに強いため、CRAICは良好に収束する.デバイスが基地局から遠く離れた場合、性能は低下するものの、CRAICは IIDと non-IIDのどちらの設定でも収束性を維持しており、これは広域でのOTA連合学習の実現における CRAICの可能性を明らかにしている.

図 5: コホートサイズNの変化による CRAIC アルゴ リズムの性能評価(左: $\alpha = 10^{20}$ 、右: $\alpha = 0.1$)

図5はコホートサイズが CRAIC の性能にどのよう に影響するかを示している.基本的に、コホートサイ ズが大きいほどテスト精度は高くなるが、これはノイ ズが集約されたローカル勾配に比べて無視できるほど 小さくなるためである.逆にコホートサイズを小さく すると、集約されたローカル勾配の受信信号の強度は 必然的に低下する.それにもかかわらず、CRAICはノ イズに対して各コホート内のデバイスの送信電力を可 能な限り増加させるコホートを構成することにより収 束性を維持している.

6. 将来展望

ローカルでのデータ保持やデータプライバシーの保 護などの特徴を持つため、連合学習はエッジ人工知能 等への道を切り開く上で非常に望ましいものである. 本研究では空中計算を利用した OTA 連合学習のため のコホートベースの送信電力制御及び勾配回復技術の 開発に注目しているものの、実際には調査する価値の ある観点が他にもいくつかあり、それらがさらなる研 究の課題と機会をもたらしうることは明白である.

おわりに

本研究では OTA 連合学習におけるコホートベース の送信電力制御と勾配回復に関する問題を検討した. そのために、まずデバイスのチャネル係数に基づいて コホートを構築し、コホート全体の送信電力を考慮し ながら、コホート内のチャネル係数に基づいて送信電 力制御と勾配回復を実行する CRAIC アルゴリズムを 提案した.シミュレーション結果によって、提案法は 他の送信電力制御の手法を凌駕し、IID と non-IID の 両方の設定においても理想状況の FedAvg に近いテス ト精度を示した.さらに、提案法の性能はデバイスが 基地局に近い位置にある場合、またはコホートサイズ が大きくなった場合にさらに向上することが分かった.

用語解説

- *1 連合学習(Federated Learning):従来の機械学習 と違って、各デバイスが所有している生データを中 央のサーバに集計せず、デバイス同士が協調的に学 習を行うことで、よりセキュアな環境で機械学習を 実行できるのが特徴である.
- *2 空中計算 (Over-The-Air Computation): 無線マル チアクセスチャネルの信号重畳の特性を利用し、通 信タスクと計算タスクを同時に行うような技術で ある.

Cohort-based Transmit Power Control and Gradient Recovery for Over-The-Air Federated Learning

参考文献

- [R1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas, "Communication-efficient learning of deep networks from decentralized data," in Proc. *AISTATS*, Apr. 2017, pp. 1273–1282.
- [R2] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," *Proc. IEEE*, vol. 86, no. 11, pp. 2278–2324, 1998.
- [R3] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang, and Y. Khazaeni, "Bayesian nonparametric federated learning of neural networks," in *Proc. ICML*, Jun. 2019, pp. 7252–7261.
- [R4] X. Cao, G. Zhu, J. Xu, and K. Huang, "Optimized power control for over-the-air computation in fading channels," *IEEE Trans. Wireless Commun.*, vol. 19, no. 11, pp. 7498– 7513, 2020.

関連文献

- [1] 寺井広大・江易翰・林海・計宇生(2022). 胸部 X 線画像におけるデータ不均一度が連合学習に与え る影響に関する分析. 令和 4 年電気関係学会関西 連合大会講演論文集、220-221.
- [2] C. Chen, Y.-H. Chiang, H. Lin, J. C. Lui, and Y. Ji, "Energy harvesting aware client selection for over-the-air federated learning," in *Proc. IEEE GLOBECOM*, 2022, pp. 5069–5074.
- [3] 西本賢司・寺井広大・江易翰・林海・計宇生(2023). モデルポイズニング攻撃に対処する連合学習の開発に関する研究. 2023 年電子情報通信学会総合大会--情報・システム講演論文集 2、153.
- [4] K. Nishimoto, Y.-H. Chiang, H. Lin, and Y. Ji, "FedATM: Adaptive trimmed mean based federated learning against model poisoning attacks," in *Proc. IEEE VTC-Spring*, 2023, pp. 1– 5.
- [5] C. Chen, Y.-H. Chiang, H. Lin, J. C. Lui, and Y.

Ji, "Joint client selection and receive beamforming for over-the-air federated learning with energy harvesting," *IEEE Open J. Commun. Soc.*, vol. 4, pp. 1127–1140, 2023.

- [6] 西本賢司・江易翰・林海・計宇生(2023). モデル ポイズニング攻撃に対処する適応的連合学習に関 する研究. 令和 5 年電気関係学会関西連合大会講 演論文集、190-191.
- [7] K. Terai, Y.-H. Chiang, H. Lin, and Y. Ji, "Cohortbased power scaling and gradient recovery for over-the-air federated learning," in *Proc. IEEE VTC-Fall*, 2023, pp. 1–5.
- [8] Y.-H. Chiang, K. Terai, T.-W. Chiang, H. Lin, Y. Ji, and J. C. S. Lui, "Optimal transport-based oneshot federated learning for Artificial Intelligence of Things," *IEEE Internet Things J.*, vol. 11, no. 2, pp. 2166–2180, 2024.
- [9] 寺井広大・江易翰・林海・計宇生(2024). チャネ ル時変性に対処した OTA 連合学習におけるコホー ト作成. 2024 年電子情報通信学会総合大会講演論 文集、B-15-04.
- [10] 西本賢司・江易翰・林海・計宇生 (2024). OTA 連合学習におけるポイズニング攻撃に対する防 御手法の提案. 2024 年電子情報通信学会ソサイ エティ大会講演論文集、B-7-14.
- [11] 久森敬太・江易翰・林海・計宇生 (2024). RIS を 用いた OTA 連合学習における位相シフト最適化 の研究開発. 2024 年電子情報通信学会ソサイエ ティ大会講演論文集、B-7-11.
- [12] K. Hisamori, Y.-H. Chiang, H. Lin, and Y. Ji, "Hybrid quantum-classical computing in federated learning with data heterogeneity," in *Proc. IEEE PIMRC*, 2024, pp. 1–5.

この研究は、令和3年度SCAT研究助成の対象として採用され、令和3~4年度に実施されたものです。