Absorption Enhancement of Monolayer Graphene by Silicon Metasurface

高原 淳一 (Junichi TAKAHARA, Ph. D.) 大阪大学大学院工学研究科 教授 博士(工学) (Ph. D., Professor, Graduate School of Engineering, Osaka University) 応用物理学会、日本光学会、電子情報通信学会、OPTICA 他 受賞:応用物理学会フェロー (2024年) 著書: 高原淳一(共著)、アクティブ・プラズモニクス 3章 (コロナ社、2013). 高原淳一(分担)、メタマテリアル、メタサーフェスの設計・作製と応用技 術 1章、2章 (R&D 支援センター、2020) 高原淳一(分担)、光と物質の相互作用ハンドブック 4編12章プラズモ ニックデバイス (監修:荒川泰彦、編集委員:岩本 敏、金光 義彦、島野 亮、 高原 淳一、立間 徹) (NTS、2023) J. Takahara, " Thermal Plasmonics and Metamaterials for a Low-Carbon Society, Ch. 5 (pp.85-103, 19 pages) ed. Kotaro Kajikawa and Junichi Takahara (CRC Press, London, 2024)

研究専門分野:プラズモニクス、メタマテリアル

あらまし

単層グラフェンは高い電子移動度と広い光吸収帯域 をもち、超高速光変調器・光検出器への応用が期待さ れる。しかし、単層グラフェンの厚さは原子層レベル であり光吸収率は約2.3%にとどまる。光検出や全光制 御へのデバイス応用の視点からこの値は小さく、吸収 を増強することが求められる。本研究は単層グラフェ ンを誘電体ミー共振器と近接結合させ、共振器を介し て光との相互作用を増強することを目的とする。これ は超高速・高感度な赤外線検出器などに応用できる。

我々はシリコン(Si)メタサーフェス上に担持した 単層グラフェンと光の結合を縮退臨界結合により最大 化させ、完全吸収体にできることを理論的に示した。 ホロー型ミー共振器に存在するトロイダルモードのも つ強い光閉じ込めを用いることで、光通信波長帯にお いて完全吸収体を実現できる。実際に素子作製を行い メタサーフェス上に単層グラフェンを担持することに 成功した。

1. 研究背景と目的

単層グラフェンはシリコン (Si) の100倍とい う高い電子移動度をもつ。また、ディラックコーン型 バンド構造に由来する広い光吸収帯域をもつことから 超高速光変調器・光検出器への応用が期待される[1]。 また、近年ではグラフェンにとどまらず遷移金属ダイ カルコゲナイド (Transition Metal Dichalcogenide: TMDC)をはじめとする2次元ナノ材料の光エレクトロ ニクスへの応用研究の進展が著しい[2]。しかし、一般 に2次元ナノ材料の厚さは原子層レベルであるため電 子と光の相互作用は小さく、単層グラフェンの光吸収 率は約 2.3%にとどまる[3]。この値は光検出や全光制 御へのデバイス応用には小さく、光とディラック電子 の相互作用を増強する必要がある。単層グラフェンは 多層化することで層数に比例して吸収率を向上させる ことができるが、単層グラフェンのもつ優れた特性は 失われてしまう。単層グラフェンのままで光吸収を増 大させるには、どうしたらよいだろうか?

メタサーフェスを用いると光の波長より薄い構造で ありながら完全吸収体(Perfect Absorber: PA)を実 現できる。PAとはある特定の波長でのみ吸収率=1と なる物質をいう。これまで金属を用いたプラズモニッ クメタサーフェス(Plasmonic Metasurface: PMS)に よる狭帯域 PAの研究が多数行われてきた。近年、誘電 体メタサーフェスを用いた金属を用いない狭帯域の PAが提案されている。誘電体メタサーフェスを用いる PAは PMSとは原理的に異なり、対称性をもつ結合共振 器モデルの縮退臨界結合(Degenerate Critical Coupling: DCC)に基づいている。DCCによりテラヘル ツ波~可視光まで広い波長域にわたる PA が実現され ている[4,5]。我々は誘電体メタサーフェスを単層グラ フェンに近接させて光アンテナとして用いることによ りグラフェンの光吸収を増大させたいと考えた。

本研究は単層グラフェンをシリコンの誘電体ミー共 振器と近接結合させ、共振器を介してディラック電子 と光との相互作用を増強することを目的とする。これ により単層グラフェンを PA 化し、超高速・高感度な近 赤外線検出器に応用することができる。

Absorption Enhancement of Monolayer Graphene by Silicon Metasurface

2. 縮退臨界結合による完全吸収体の原理

誘電体メタサーフェスのメタ原子はミー共振器であ るが、円筒や直方体型のミー共振器は共振モードとし て電気双極子(Electric Dipole: ED)と磁気双極子 (Magnetic Dipole: ED)が存在する。一般に EDと MD の共振周波数は異なるが、ミー共振器のサイズを変え ることによって EDと MD の共振周波数を一致(縮退) させることができ、この状態はホイヘンスダイポール (Huygens' Dipole: HD)とよばれる。HDをもつミー 共振器が周期的に並んだ2次元系をホイヘンス・メタ サーフェス(Huygens' Metasurface: HMS)とよぶ。HMS を利用すると金属を用いることなく誘電体のみによる PAを実現できる。

図 1 HMS による PA の原理

HMS による PA の原理を図1に示す。対称性をもつ光 共振器への片側からの光入射は偶・奇モードの和に分 解できる。このとき周波数ωにおける吸収率 A(ω) は各 モードの吸収率の和として以下のように与えられる [4]。

$$A(\omega) = \frac{2\gamma_1 \delta_1}{(\omega - \omega_1)^2 + (\gamma_1 + \delta_1)^2} + \frac{2\gamma_2 \delta_2}{(\omega - \omega_2)^2 + (\gamma_2 + \delta_2)^2} \quad \dots (1)$$

ここで、 ω_1 、 ω_2 はそれぞれモード1、2の共振周波数、 $\gamma_i \geq \delta_i$ (i=1,2) はそれぞれモードiの放射損失、固有 損失(オーム損失)である。式(1)において、二つのモ ードが縮退($\omega_1=\omega_2$)し、固有損失と放射損失が等しい 時($\delta_i=\gamma_i$)、各モードの吸収率はそれぞれ最大値0.5を とりPAを実現(0.5+0.5=1)できる。これをDCCとよ ぶ。ミー共振器においては偶・奇モードの組としてED とMD、あるいは電気四重極子(Electric Quadrupole: EQ) と磁気四重極子 (Magnetic Quadrupole: MQ) など 多様な組み合わせが考えられる (図1参照)。

DCC を実現するためには臨界結合の条件(δ=γ)を満 たす必要があるが、先行研究ではδが近赤外で比較的大 きな値をとるアモルファスシリコン(a-Si)を用いて DCC が実現された[5]。しかし、単結晶シリコン(c-Si) の場合は a-Si に比べて固有損失が小さくδが小さすぎ るため近赤外域での臨界結合の実現は困難であった。 我々は可視域での Si のバンド間遷移による大きな固 有損失を利用して、c-SiのPAを実現した[6]。さらに、 このミー共振器を誘電体で埋め込むことで放射損失を 増大させ可視域の広い範囲で PA を実現した[6]。また、 EQ/MQ による DCC を利用した PA を実現している[7]。

3. 研究の方法と結果

図2 単層グラフェンの PA 化素子の構造

図2に我々が提案する単層グラフェンの PA 化素子 の構造を示す[8]。a-Si でミー共振器を作ると吸収さ れた光エネルギーはグラフェンではなく共振器に移行 してしまう。これを防ぐためにはミー共振器は c-Si で 作り無損失にした方が良い。これは単層グラフェンと c-Si メタサーフェスの結合系であり、ホロー型ミー共 振器とよばれる中央に穴をもつミー共振器を利用して いる。我々は c-Si のホロー型ミー共振器上に単層グ ラフェンを近接させて置き、2節に述べた DCC の原理 により c-Si の光吸収がない近赤外域においても PA を

Absorption Enhancement of Monolayer Graphene by Silicon Metasurface

実現できることを理論的に示した[8]。

近赤外域では c-Si の光吸収はほとんどなく(&<<1)、 臨界結合条件(&=y)を満たすためには、共振モードが γ<<1でなければならない。すなわち極めて小さな放射 損失をもつ共振モードが必要となる。その代表例がト ロイダル電気双極子(Toroidal Electric Dipole: TED) である。TED は多重極展開では表すことのできない新 しいタイプの電磁共振モードである。TED は双極子と 比較して放射損失が極めて小さく、非輻射的(ダーク モード)であることが知られ、メタオプティクスに新 たな道を拓くと期待されている[9]。しかし、TED を構 成するためには多数のループ電流が必要であるため、 メタ原子で実装するためには3次元的な金属トーラス 構造が必要であった[10]。近年、ホロー型ミー共振器 のような平面型の誘電体メタサーフェスにおいても TED が励起できることがわかり注目を集めている[11]。

我々は図2に示す c-Siのホロー型ミー共振器に TED が効率的に生成できることに注目した。図3にホロー 型ミー共振器中の TED モードの電磁場分布を示す。図 3(f)に示すように電流ループが観測され、右向きのト ロイダルモーメント(矢印)が形成されることがわか る。

図4(a)に示す系において、ホロー型ミー共振器中の 穴のサイズ(w)を変化させたときの反射スペクトルを 調べた。その結果、図4(b)に示すようにTEDとMDの 共振周波数がブルーシフトすることが観測され、波長 1.55µm 付近で縮退がおきることがわかった。ここで、 TED は偶モード、MD は奇モードに対応している。図4 (c)に示すように縮退近傍を拡大すると、w=210nmのと き DCC がおきる。これは TED のγが非常に小さいためで ある。このとき 1.57µm において A=0.998 となり、PA となることがわかる(図4(d))。このように誘電体メ タサーフェスを利用して、近赤外域における単層グラ フェンの光吸収率を大幅に増強させ、PA を実現できる ことがわかった[8]。

次に実験的検証のため本デバイスを作製した。ここでは PA 波長が光通信波長 1.55µm となるように構造を 再設計した。素子のサイズは直方体のメタ原子の一辺 L=685nm、周期 P=780nm、高さ h=299nm、中空の一辺 w=210nm である。このとき A=0.955、共振器のQ値=378 となる。

図5(a)に完成した素子の光学顕微鏡像を示す。c-Si メタサーフェス上に単層グラフェンと保護層として六 方晶窒化ホウ素(hexagonal boron nitride: h-BN)を 担持する素子の作製に成功した。グラフェン領域にお けるラマンスペクトルから単層グラフェンが担持され

Absorption Enhancement of Monolayer Graphene by Silicon Metasurface

たことを確認している(図5(b))。まだグラフェンフ レークのサイズが小さく、グラフェン層の有無よるス ペクトルの差異を観測することはできていないが、作 製プロセスを確立することができた。今後はFT-IRを 用いて本素子の近赤外域の顕微分光スペクトルの測定 を行う予定である。

図5完成した素子の光学顕微鏡像とラマンスペクトル

4. 将来展望

ホロー型ミー共振器に存在するトロイダルモードの もつ強い光閉じ込めを用いることで光通信波長帯にお いてグラフェンを完全吸収体化できる。本素子は単層 グラフェンのもつ優れた特性を保持したまま光との相 互作用を増強できることから、超高速・高感度な近赤 外線検出器への応用が期待される。

また、本素子はメタ原子のサイズや形状を変えるだ けで動作域を可視~赤外の広い波長域に拡張できるこ とから、材料の光学特性に大きくは依存しない高い柔 軟性をもつ。さらに、メタサーフェス上に担持するグ ラフェンを他の2次元ナノ材料に置き換えることが可 能となる。例えば、WS2をはじめとする TMDC に置き換 えると特異なエキシトン発光の増強をはじめとするバ レートロニクスの成果と融合させるなど、多様な機能 拡張を行うことも視野に入る。

おわりに

Si メタサーフェスにより単層グラフェンと光の相 互作用を最大化させ、完全吸収体にできることを理論 的に示した。本素子は光の2次元系である誘電体メタ サーフェスと2次元ナノ材料との融合による新しい縦 型フォトニック素子ともいうべきものである。これは 単層グラフェンとシリコンメタサーフェスの結合によ り縦型グラフェンフォトニクスへの道を拓くと考えられる。

用語解説

*1 メタサーフェス メタ原子とよばれる波長より小 さな光共振器を基板上に並べて構成される2次元のメ タマテリアル。近年、金属を用いない誘電体メタサー フェスが実現され、メタレンズやメタホログラムなど 無損失の光学素子に応用され注目を集めている。

*2 完全吸収体 ある特定の波長の光をすべて吸収する(吸収率=1)ような狭帯域の吸収物質。黒体は全 波長の光をすべて吸収する仮想的な物体であり、黒体 とは異なる。

参考文献

- F.F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, "Graphene Photonics and Optoelectronics", Nature Photon. 4, 611(2010).
- [2] K. Thakar and S. Lodha, "Optoelectronic and photonic devices based on transitionmetal dichalcogenides", Mater. Res. Express 7, 014002 (2020).
- [3] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, "Fine structure constant defines visual transparency of graphene", Science 320, 1308 (2008).
- [4] X. Ming, X. Liu, L. Sun, and W.J. Padilla, "Degenerate critical coupling in all-dielectric metasurface absorbers", Opt. Express 25(20), 24658 (2017).
- [5] C.Y. Yang, J.H. Yang, Z.Y. Yang, Z.X. Zhou, M.G. Sun, V.E. Babicheva, and K.P. Chen, "Nonradiating Silicon Nanoantenna Metasurfaces as Narrowband Absorbers", ACS Photon. 5, 2596 (2018).
- [6] R. Xu and J. Takahara, "Radiative loss control of an embedded silicon perfect absorber in the visible region", Opt. Lett. 46(4), 805 (2021).

Absorption Enhancement of Monolayer Graphene by Silicon Metasurface

- [7] R. Xu and J. Takahara, "All-dielectric perfect absorber based on quadrupole modes," Opt. Lett. 46(15), 3596 (2021).
- [8] R. Xu, J. Fujikata, and J. Takahara, "Graphene perfect absorber based on degenerate critical coupling of toroidal mode", Opt. Lett. 48(6), 1490 (2023).
- [9] N. Zheludev, "The Rise of Toroidal Electrodynamics and Spectroscopy", ACS Photon. 10, 556 (2023).
- [10] T. Kaelberer, V.A. Fedotov, N. Papasimakis, D.P. Tsai, N. Zheludev, "Toroidal Dipolar Response in a Metamaterial", Science 330, 1510 (2010).
- [11] J. F. Algorri, D. C. Zografopoulos, A. Ferraro, B. García-Cámara, R. Beccherelli, and J. M. Sánchez-Pena, "Ultrahigh-quality factor resonant dielectric metasurfaces based on hollow nanocuboids", Opt. Express 27(5), 6320 (2019).

関連文献

高原淳一、「メタサーフェス〜新しい平面光学素子の原 理と産業化への展望〜」、電子情報通信学会誌、105(1)、 39 (2022)

高原淳一、「シリコンメタサーフェスにおける完全吸収 体と全光スイッチング」、精密工学会誌、90(8)、627 (2024)

謝辞

共同研究者の徳島大学 藤方潤一教授、物質・材料 研究機構 岩崎拓哉博士、大阪大学 Rongyang Xu 博士 (当時)、宮田孝太朗(当時)、橋本将希に感謝する。

この研究は、令和2年度SCAT研究助成の対象として採用され、令和3~5年度に実施されたものです。